Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The Global‐scale Observations of Limb and Disk (GOLD) mission has provided an unusual array of upper atmosphere observations from a geostationary platform, including the behavior of the low latitude nighttime ionosphere. One of the features observed by GOLD is the formation of an X‐pattern in the Equatorial Ionization Anomaly when its crests collapse near the magnetic equator. This paper discusses the X‐patterns that were observed during the first 5 years of the GOLD mission (2018–2023). This catalog reveals that X‐pattern occurrences are more frequent during low solar activity, and appear to be driven by changes in the normal low latitude zonal winds. In the longitude region observed by GOLD (approximately 75°W–5°E) they occurred exclusively during the September Equinox‐December Solstice‐March Equinox seasons, and they were more likely to occur near 45°W longitude, near the point where the geomagnetic equator crosses the geographic equator in the western hemisphere.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Abstract During geomagnetically quiet and solar minimum conditions, spatial variations of the early morning thermosphere‐ionosphere (TI) system are expected to be mainly governed by wave dynamics. To study the postmidnight dynamical coupling, we investigated the early morning equatorial ionization anomaly (EIA) using Global‐scale Observations of the Limb and Disk (GOLD) measurements of OI‐135.6 nm nightglow emission and global navigation satellite system (GNSS)‐based total electron content (TEC) maps. The EIA structures in the OI‐135.6 nm emission over the American landmass resemble, spatially and temporally, those observed in the GNSS‐TEC maps. The early morning EIA (EM‐EIA) crests are well separated in latitude and mostly located over the middle of South America during October–November. In February–April the crests are less separated in latitude and predominantly located over the west coast sector of South America. Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension (WACCMX) simulations with constant solar minimum and quiet‐geomagnetic conditions show that EM‐EIA can occur globally and shows properties similar to longitudinal Wave 4 pattern. Thus, we propose that EM‐EIA is driven by dynamical changes associated with the lower atmospheric waves.more » « less
An official website of the United States government
